<form id="zdldf"></form><address id="zdldf"></address>

      <form id="zdldf"><nobr id="zdldf"></nobr></form>

        <address id="zdldf"></address>
        首頁 > 科學研究 > 學術看板 > 正文

        類別標簽的語義信息在視覺識別模型中的應用

        供稿:    責任編輯:安果    時間:2018-05-02    閱讀:

        報告題目:類別標簽的語義信息在視覺識別模型中的應用

        The semantic information of class labels and its applications in visual recognition

        報告時間:2018年5月3日10:00

        報告地點:望江西五教101副樓

        主講人:劉凌嶠博士

        劉凌嶠博士現為阿德萊德大學講師(Lecturer)。他在澳大利亞國立大學取得博士學位。其主要研究興趣為計算機視覺與機器學習。他在計算機視覺和機器學習頂級會議(如CVPR, ICCV, NIPS, ECCV)以及期刊(如TPAMI, IJCV)上發表論文共30余篇。他于2016年獲得由澳大利亞研究理事會頒發的Discovery Early Career Researcher獎(澳大利亞優秀青年基金)。

        Dr Lingqiao Liu is a Lecturer in University of Adelaide. He obtained his PhD from the Australian National University. His main research interests are machine learning and computer vision. He has published more than 30 papers on the top conference/journals of machine learning and computer vision, including CVPR, ICCV, NIPS, ECCV, TPAMI, IJCV. He has been awarded the prestigious DECRA fellowship in 2016.

        個人主頁:

        https://sites.google.com/site/lingqiaoliu83/


        報告摘要:

        在一般計算機識別系統里。類別標簽僅作為一種區別類與類的標記。而實際上,類別標簽也包含了豐富的語義信息。這些語義信息可以被用來幫助識別系統取得更好的性能。本次報告將介紹應用該思路的兩個識別系統案例。其中一個用類別標簽來提取圖像與標簽吻合的視覺信息并用來幫助圖像搜索。另一個利用類別標簽的語義信息來解決視覺關系檢測問題。

        Abstract

        In traditional visual recognition, class labels are merely used as tokens to distinguish different categories. However, in many visual recognition problems, the semantic information beneath the class label can be invaluable for improving the recognition performance. In this talk, I will introduce two of our recent works which leverage semantic information from the class label to guide visual recognition. Specifically, one uses semantic information to extract the visual patterns which are consistent with the class label and uses this scheme for image retrieval. The other uses label semantic information for solving the visual relationship detection problem.


        歡迎各位光臨!


        澳客时时彩官网